ªì¾Ç¥~»y®É¡A¨ä¤¤¤@Ó¬D¾Ô«Ü¥i¯à¬O»{Ãѵü·J¡C¶Ç²Î¾Ç²ß¤èªk¦³¦hŪ¤å³¹¡B¦h¬Ý¹q¼v¡B¦h¬d¦r¨åµ¥µ¥¡A¥Dn³z¹L¦h¥[½m²ß©MÀ³¥Îªº¤è¦¡¨Ó¥[±j°O¾Ð¡C¥i¬O¡A¦pªG¾Ç²ßªº»y¨¥ÄÝ©ó¤ñ¸û¥j¦Ñªº»yºØ¡]¦p¤Ú§Q¤å¡B±ë¤å¡^¡A¾A¥Îªº±Ð§÷¦³¡A©Î¹ï©Ò¾Ç»y¨¥¥¼¯à§¹¥þ´x´¤¡A¤´³B©ó°ò¦¶¥¬q¡A¤Wz¤èªk¥¼¥²¤Q¤À¦³®Ä¡C
µ§ªÌ¤W¾Ç¦~¶}©lÁ¿±Â±ëº~¦ò¨å½Ķªº±Mªù½Ò¡An¨D¾Ç¥Í´x´¤°ò¥»±ë¤å»yªk¡A¨Ã¥H¾Ç²ß¥Í¬¡¤¤ªº±`¨£¦rµü¬°¤Á¤JÂI¡A¦p¤é±`¾¹¨ã¡B¦çªA¹«~¡B¤sªL´Óª«µ¥±ë¤å¦ò¨å¥ç±`´£¤Îªºª«¥ó¦WºÙ¡C²{®ÉÁö¦³¤£¤Ö±ë¤å¦r¨å¤Îµü·JÁ`ªí¥H¨Ñ¾Ç²ß¬d¾\¡A¥i¬O³¡¤À±ø¥Ø¸Ñ»¡»á¬°Ácº¾¡A¬d§ä»Ý®É¡A¦Ó¥B®e©ö¥X²{¡u±ÛŪ±Û§Ñ¡vªº°ÝÃD¡A«e¤@¨è¤~½¤F¦r¨å¡A¤U¤@¨è«K§Ñ°O¡C
¦³¨£¤Î¦¹¡A¬°¤FÅý±ë¤åªì¾ÇªÌ¦³®Ä°O»w·sµü¡Aµ§ªÌ²{¥¿¶}µo¤@´Ú·s¦¡¹q¤l¤u¨ã¡A¦W¬°¡uAI±ë¤åµü·J¾Ç²ß¨t²Î¡v¡]¨t²Î¤¶±¨£ªþ¹Ï¡^¡C¸Ó¨t²Î§Q¥Î¤H¤u´¼¯à¤¤ªº²`«×¾Ç²ß¡]deep learning¡^§Þ³N¡AÅý¨Ï¥ÎªÌ³z¹L¹q¤lÃèÀY¡A¿ë§OÃèÀY«eªºª«¥ó¡AµM«á¨t²Î§Y®É´£¨Ñ¦³Ãöª«¥óªº±ë¤å¡B¤¤¤å¤Î^¤åªº¤T»y¹ïĶ¡C¦¹¥~¡A¨t²Î³sµ²¤£¦P¤º®e¶}©ñªº¦Ê¬ì¥þ®Ñ¤Î¦h»yµoÁnÃã¨å¡A¦Û°Ê´£¨Ñ¿ëªRª«ªº©w¸q¸Ñ»¡¡A¥H¤Î¤¤¡B^¥H¥~¦h°ê»y¨¥ªºÂ½Ä¶©MŪµ¡A¨Ï¥@¬É¦U¦a¥Î¤á¥i¥Hµ½¥Î¥»¨t²Î¦Û¾Ç±ë¤å¦rµü¡C
¥»µü·J¾Ç²ß¨t²Î¹ï¥j¨å»y¨¥¾Ç²ß¦³¥|¤j·N¸q¡G¨ä¤@¡A©Ò¦³¥i¨£ª«§¡¦¨¬°±Ð§÷¡A¾Ç¥Í¥i¥H§Q¥Î¨t²Î®É¨è¦Û¾Ç¡C¨ä¤G¡A´î¬Ù½¬d¦r¨å¦rªíªº®É¶¡¡A´£°ª¾Ç²ß®Ä²v¡C¨ä¤T¡A¿ëªRª«¦bÃèÀY¤U¤ÏÂÐ¥X²{¡A¦³§U¥[±j°O¾Ð¡A´î§C±ÛŪ±Û§Ñªº¾÷·|¡C¨ä¥|¡A°t¦X½Ò°óÁ¿¾Ç©M¤À²Õ½m²ß¡A¨Ï¨t²Î¦¨¬°¤¬°Ê±Ð¾Ç¤u¨ã¡CÁ|¨Ò¦Ó¨¥¡AÅý¾Ç¥Í¤À²Õ¤ñÁÉ¡A§Q¥Î¨t²Î¬d§ä¬Y¨Ç¦rµüªº±ë¤å¡AµM«á«ö¨ä³t«×¡B·Ç½T«×¡B¤À¤uªí²{µ¥¦]¯Àµû¤À¡A¥i¥H´£°ª°Ñ»PªÌ¾Ç²ß»y¨¥ªº¿³½ì¡C
¦AªÌ¡A³oÃþ½Ķ¨t²ÎªºÀ³¥Î¼h±¬Æ¼s¡A¤£©ó±ë¤å±Ð¾Ç¡C¬ÛÃö³]p·§©À©M®M¥ó¥i¥H¥Î©óµo®i¤£¦P²{¥N»y¨¥ªº¾Ç²ß¤u¨ã¡A¦p¤é¡BÁú¡B¼w¡Bªk¡B¦è¡B·Nµ¥¥~»y¡A¨Ã¥i¥Î©ó¶}µo¤è«K©ö¥Îªº¤â¾÷À³¥Îµ{¦¡¡A¥~»yªì¾ÇªÌ¤@¾÷¦b¤â¡A«K¥i¤£Â_¾Ç²ß·sµü¡A¥[¤W¦Ñ®vÁ¿¸Ñ¤ÎÓ¤Hºt½m¡A¦¨®Ä§ó¹ü¡A³o´N¬O·í¤µ¤H¤u´¼¯à¹ï«P¶i»y¨¥¾Ç²ßªº§@¥Î¡C¡½¿½¥@¤Í »´äùڥͤj¾Ç½Ķ¾Ç°|Á¿®v